3 years ago

Antidiabetic activities of entagenic acid in type 2 diabetic db/db mice and L6 myotubes via AMPK/GLUT4 pathway

Antidiabetic activities of entagenic acid in type 2 diabetic db/db mice and L6 myotubes via AMPK/GLUT4 pathway
Entada phaseoloides (L.) Merr., a traditional Chinese folk medicine, has been used in treating diabetes and other inflammatory disorders. Our previous study revealed that the triterpene saponins in E.Phaseoloides possessed an antidiabetic effect in type 2 diabetic rats by activating AMP-activated protein kinase (AMPK). Entagenic acid, the principal aglycon, isolated from the seed kernels of E. phaseoloides, has been proposed to possess a significant role in the antidiabetic effect, however, its actual effect and pertinent mechanisms are still unknown. Aim of the study The aim of the present study was to investigate the antidiabetic effect of entagenic acid in a type 2 diabetic animal model (C57BIKsj db/db mice) and its role in the regulation of glucose uptake in L6 myotubes, and to explore the possible molecular mechanisms. Materials and methods In vivo, average weekly body weight, daily water, food intake and postprandial blood glucose levels, the intraperitoneal insulin tolerance test, glucose tolerance test, serum lipid profiles and pancreatic histopathological changes in db/db mice treated with entagenic acid orally at different doses (5, 10 and 20mg/kg) were assessed and compared with wild-type littermates or vehicle- and metformin-treated db/db mice. In vitro, effects of entagenic acid on the glucose consumption and the phosphorylation of protein kinase B (AKT) and AMPK in L6 myotubes were evaluated. Results In vivo, entagenic acid significantly lowered postprandial blood glucose levels but not the body weight, normalized the serum lipid imbalance, improved the impaired glucose tolerance, insulin resistance, as well as the pathological changes in pancreatic islets. In vitro, entagenic acid dose-dependently promoted glucose utilization and enhanced the translocation and expression of glucose transporter 4 (GLUT4), and phosphorylation of AMPK but not AKT. Conclusions The present study demonstrated that entagenic acid can markedly maintain the glucose homeostasis, improve insulin resistance and ameliorate dyslipidemia. Its antihyperglycemic effect could be caused by promoting AMPK mediated cellular signaling and GLUT4 translocation in muscles.

Publisher URL: www.sciencedirect.com/science

DOI: S0378874117314307

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.