3 years ago

Evaluation of the aqueous phototransformation routes of phenyl ethyl azolic fungicides by liquid chromatography accurate mass spectrometry

Evaluation of the aqueous phototransformation routes of phenyl ethyl azolic fungicides by liquid chromatography accurate mass spectrometry
Similarities and differences among the phototransformation routes of four azolic fungicides (diniconazole, DIN, imazalil, IMA; penconazole, PEN; and propiconazole, PRO) in surface water aliquots are investigated. Selected compounds share a common chemical structure consisting on dichlorophenyl and azolic rings connected through an ethylene bridge, which is substituted with different functionalities. Liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) was employed as analytical technique to follow the time-course of precursor fungicides and to detect and to identify their photo-transformation products (TPs). Under solar light, the substituents linked to the ethylene chain controlled the stability of the fungicides. Whilst PEN and PRO remained stable, DIN and IMA showed moderate reactivities, with half-lives (t1/2) of 5.1 and 33.5h, respectively. When exposed to UV (254nm) radiation, all compounds were effectively degraded with t1/2 in the range from seconds to a few minutes. Dechlorination followed by intramolecular cyclization, between phenyl and azolic rings, was identified as a common phototransformation route under UV irradiation. Depending on the length and the kind of the functionalities attached to the ethylene bridge, additional cyclization reactions are also possible. In-silico toxicity predictions pointed out to dechlorinated tricyclic TPs as the most concerning ones, with predicted lethal concentrations (LC50) in the same range as the precursor fungicides.

Publisher URL: www.sciencedirect.com/science

DOI: S0048969717326918

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.