5 years ago

Small-molecule inhibition of pyruvate phosphate dikinase targeting the nucleotide binding site

Georg Groth, Alexander Minges

by Alexander Minges, Georg Groth

Pyruvate phosphate dikinase (PPDK) is an essential enzyme of C4 photosynthesis in plants, catalyzing the ATP-driven conversion of pyruvate to phosphoenolpyruvate (PEP). It is further used by some bacteria and unicellular protists in the reverse, ATP-forming direction. Many weed species use C4 photosynthesis in contrast to world’s major crops, which are C3 plants. Hence inhibitors of PPDK may be used as C4-specific herbicides. By screening a library of 80 commercially available kinase inhibitors, we identified compounds derived from bisindolylmaleimide (bisindolylmaleimide IV, IC50 = 0.76 ± 0.13 μM) and indirubin (indirubin-3’-monoxime, IC50 = 4.2 ± 0.9 μM) that showed high inhibitory potency towards PPDK and are among the most effective PPDK inhibitors described today. Physiological studies on leaf tissues of a C4 model plant confirmed in vivo inhibition of C4-driven photosynthesis by these substances. Moreover, comparative docking studies of non-inhibitory bisindolylmaleimide derivatives suggest that the selectivity towards PPDK may be increased by addition of functional groups to the core structure.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0181139

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.