5 years ago

Overcoming insecticide resistance through computational inhibitor design

N., Kotze, Zaidman, P. D., Carvalho, S., London, D., P. J., G., James, C. J., Mabbitt, A. C., Jackson, Correy
Insecticides allow control of agricultural pests and disease vectors and are vital for global food security and health. The evolution of resistance to insecticides, such as organophosphates (OPs), is a serious and growing concern. OP resistance often involves sequestration or hydrolysis of OPs by carboxylesterases. Inhibiting carboxylesterases could therefore restore the effectiveness of OPs for which resistance has evolved. Here, we use covalent computational design to produce nano/pico-molar boronic acid inhibitors of the carboxylesterase aE7 from the agricultural pest Lucilia cuprina, as well as a common Gly137Asp aE7 mutant that confers OP resistance. These inhibitors, with no intrinsic apparent toxicity, act synergistically with the OPs diazinon and malathion to reduce the amount of OP required to kill L. cuprina by up to 16-fold, and abolish resistance. These compounds represent a solution to insecticide resistance as well as to environmental concerns regarding OPs, allowing significant reduction of use without compromising efficacy.

Publisher URL: http://biorxiv.org/cgi/content/short/161430v1

DOI: 10.1101/161430

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.