5 years ago

Geometry Optimization with Machine Trained Topological Atoms

Peter I. Maxwell, Stuart J. Davie, François Zielinski, Nicodemo Di Pasquale, Salvatore Cardamone, Timothy L. Fletcher, Paul L. A. Popelier, Matthew J. L. Mills
The geometry optimization of a water molecule with a novel type of energy function called FFLUX is presented, which bypasses the traditional bonded potentials. Instead, topologically-partitioned atomic energies are trained by the machine learning method kriging to predict their IQA atomic energies for a previously unseen molecular geometry. Proof-of-concept that FFLUX’s architecture is suitable for geometry optimization is rigorously demonstrated. It is found that accurate kriging models can optimize 2000 distorted geometries to within 0.28 kJ mol−1 of the corresponding ab initio energy, and 50% of those to within 0.05 kJ mol−1. Kriging models are robust enough to optimize the molecular geometry to sub-noise accuracy, when two thirds of the geometric inputs are outside the training range of that model. Finally, the individual components of the potential energy are analyzed, and chemical intuition is reflected in the independent behavior of the three energy terms E intra A (intra-atomic), V cl AA ' (electrostatic) and V x AA ' (exchange), in contrast to standard force fields.

Publisher URL: https://www.nature.com/articles/s41598-017-12600-3

DOI: 10.1038/s41598-017-12600-3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.