3 years ago

Helium Accepts Back-Donation In Highly Polar Complexes: New Insights into the Weak Chemical Bond

Helium Accepts Back-Donation In Highly Polar Complexes: New Insights into the Weak Chemical Bond
Gernot Frenking, Francesco Tarantelli, Felice Grandinetti, Diego Cesario, Francesca Nunzi, Fernando Pirani, Leonardo Belpassi
We studied the puzzling stability and short distances predicted by theory for helium adducts with some highly polar molecules, such as BeO or AuF. On the basis of high-level quantum-chemical calculations, we carried out a detailed analysis of the charge displacement occurring upon adduct formation. For the first time we have unambiguously ascertained that helium is able not only to donate electron density, but also, unexpectedly, to accept electron density in the formation of weakly bound adducts with highly polar substrates. The presence of a large dipole moment induces a large electric field at He, which lowers its 2p orbital energy and enables receipt of π electron density. These findings offer unprecedented important clues toward the design and synthesis of stable helium compounds.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01320

DOI: 10.1021/acs.jpclett.7b01320

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.