2 years ago

Resistance Distance and Control Performance for Google bittide Synchronization. (arXiv:2111.05296v1 [eess.SY])

Sanjay Lall, Calin Cascaval, Martin Izzard, Tammo Spalink
We discuss control of bittide distributed systems, which are designed to provide logical synchronization between networked machines by observing data flow rates between adjacent systems at the physical network layer and controlling local reference clock frequencies. We analyze the performance of approximate proportional-integral control of the synchronization mechanism and develop a simple continuous-time model to show the resulting dynamics are stable for any positive choice of gains. We then construct explicit formulae to show that closed-loop performance measured using the L2 norm is a product of two terms, one depending only on resistance distances in the graph, and the other depending only on controller gains.

Publisher URL: https://arxiv.org/abs/2111.05296

DOI: arXiv:2111.05296v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.