5 years ago

Quantum Tunneling Currents in a Nanoengineered Electrochemical System

Quantum Tunneling Currents in a Nanoengineered Electrochemical System
Chaitanya Gupta, Roger T. Howe, Matthew Seal, Boris Murmann, Shuai Chang, Ross M. Walker, Sean R. Fischer
We develop an equivalent circuit model for charge transfer across a nanoscale electrochemical interface and apply it to tune the interface parameters so that tunneling electrons transduce information about the vibronic structure of the interface. Model predictions are broadly consistent with cyclic voltammograms acquired using a custom, low-noise potentiostat on a 50 nm diameter Pt(80%)–Ir(20%) electrode functionalized with 10 nm diameter gold nanoparticles and immersed in a phosphate buffer with a redox couple. Conductance–voltage sweeps for 1 μM 2-d-leucine have shifted vibronic peaks from those for 1 μM leucine, indicating promise for label-free sensing. The model is based on two interdependent lengths that describe the interaction strengths between the participant electronic states in the electrolyte and the participant reaction coordinates, and between the latter and the surrounding bath modes. These lengths translate into capacitive elements which are positioned in parallel to the classical capacitance defined by the interface geometry. We identify an optimal charge-transfer regime, defined by a specific interface geometry, in which the energy transferred between the transitioning electron and a specific reaction coordinate mode is dissipated exactly by the interaction of the recipient mode with the surrounding bath. The perturbative effect of coupling external potentiostatic instrumentation to the nanoelectrochemical interface for measuring charge transfer is defined by an equivalent interface “temperature”.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b04350

DOI: 10.1021/acs.jpcc.7b04350

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.