3 years ago

Differential brainstem atrophy patterns in multiple sclerosis and neuromyelitis optica spectrum disorders

Henry Ka-Fung Mak, Chi-Yan Lee, Frederik Barkhof, Koon-Ho Chan, Pui-Wai Chiu, Hing-Chiu Chang
Background Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) are central nervous system (CNS) inflammatory demyelinating disorders. It is clinically important to distinguish MS from NMOSD, as treatment and prognosis differ. Brainstem involvement is common in both disorders. Purpose To investigate whether the patterns of brainstem atrophy on volumetric analysis in MS and NMOSD were different and correlated with clinical disability. Study Type Case–control cross-sectional study. Subjects In all, 17 MS, 13 NMOSD, and 18 healthy control (HC) subjects were studied. Field Strength/Sequence T1-weighted and T2w spin-echo images were acquired with a 3T scanner. Assessment Semiautomated segmentation and volumetric measurement of brainstem regions were performed. Anatomical information was obtained from whole brain T1w images using a 3D magnetization-prepared rapid gradient-echo (MPRAGE) imaging sequence (TR/TE/T: 7.0/3.2/800 msec, voxel size: 1 × 1 × 1 mm3, scan time: 10 min 41 sec). Statistical Tests Independent samples t-test, Mann–Whitney U-test, partial correlation, and multiple regression analysis. Results Baseline characteristics were similar across the three groups, without significant difference in disease duration (P = 0.354) and EDSS score (P = 0.159) between MS and NMOSD subjects. Compared to HC, MS subjects had significantly smaller normalized whole brainstem (−5.2%, P = 0.027), midbrain (−8.3%, P = 0.0001), and pons volumes (−5.9%, P = 0.048), while only the normalized medulla volume was significantly smaller in NMOSD subjects compared to HC (−8.5% vs. HC, P = 0.024). Normalized midbrain volume was significantly smaller in MS compared to NMOSD subjects (−5.0%, P = 0.014), whereas normalized medulla volume was significantly smaller in NMOSD compared to MS subjects (−8.1%, P = 0.032). Partial correlations and multiple regression analysis revealed that smaller normalized whole brainstem, pons, and medulla oblongata volumes were associated with greater disability on the Expanded Disability Status Scale (EDSS), Functional System Score (FSS)-brainstem and FSS-cerebellar in NMOSD subjects. Data Conclusion Differential patterns of brainstem atrophy were observed, with the midbrain being most severely affected followed by pons in MS, whereas only the medulla oblongata was affected in NMOSD. Level of Evidence: 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jmri.25866

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.