3 years ago

Dimol Emission of Oxygen Made Possible by Repulsive Interaction

Dimol Emission of Oxygen Made Possible by Repulsive Interaction
György Lendvay, Péter G. Szalay, Attila Tajti
For the energy emitted in a textbook example of chemiluminescence, the peculiar red light produced by singlet molecular oxygen is about twice that of the spin-forbidden O2(a1Δg) → O2(X3g) transition. Theoretical studies suggest that the O2(a1Δg)–O2(a1Δg) van der Waals interaction is weak, and at room temperature no long-lived complex is formed. Our high-level ab initio calculations show that in the bound domain of the dimer, the oscillator strength is very small, but increases at smaller intermolecular separations, where, however, the interaction is repulsive. We propose that the emission is induced by collisions: it takes place “on-the-fly”, when the collision energy allows the system to access the repulsive part of the potential energy surface where the oscillator strength is relatively large. The contribution of different orientations of the two O2 molecules to the emission has been evaluated with a simple semiclassical model. The position of the emission peak is in accord with the experiment, and the estimated rate coefficient of collision-induced emission averaged over orientation is in reasonable agreement with the measurements.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01256

DOI: 10.1021/acs.jpclett.7b01256

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.