5 years ago

Morphology and Electronic Properties of Electrochemically Exfoliated Graphene

Morphology and Electronic Properties of Electrochemically Exfoliated Graphene
Ovidiu Ersen, Iwona Janica, Simone Bertolazzi, Artur Ciesielski, Mohamed El Garah, Tim Leydecker, Matilde Eredia, Georgian Melinte, Paolo Samorì
Electrochemically exfoliated graphene (EEG) possesses optical and electronic properties that are markedly different from those of the more explored graphene oxide in both its pristine and reduced forms. EEG also holds a unique advantage compared to other graphenes produced by exfoliation in liquid media: it can be obtained in large quantities in a short time. However, an in-depth understanding of the structure–properties relationship of this material is still lacking. In this work, we report physicochemical characterization of EEG combined with an investigation of the electronic properties of this material carried out both at the single flake level and on the films. Additionally, we use for the first time microwave irradiation to reduce the EEG and demonstrate that the oxygen functionalities are not the bottleneck for charge transport in EEG, which is rather hindered by the presence of structural defects within the basal plane.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01301

DOI: 10.1021/acs.jpclett.7b01301

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.