5 years ago

Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes

Tianbao Zhao, Aiguo Dai

Abstract

While most models project large increases in agricultural drought frequency and severity in the 21st century, significant uncertainties exist in these projections. Here, we compare the model-simulated changes with observation-based estimates since 1900 and examine model projections from both the Coupled Model Inter-comparison Project Phase 3 (CMIP3) and Phase 5 (CMIP5). We use the self-calibrated Palmer Drought Severity Index with the Penman-Monteith potential evapotranspiration (PET) (sc_PDSI_pm) as a measure of agricultural drought. Results show that estimated long-term changes in global and hemispheric drought areas from 1900 to 2014 are consistent with the CMIP3 and CMIP5 model-simulated response to historical greenhouse gases and other external forcing, with the short-term variations within the model spread of internal variability, despite that regional changes are still dominated by internal variability. Both the CMIP3 and CMIP5 models project continued increases (by 50–200 % in a relative sense) in the 21st century in global agricultural drought frequency and area even under low-moderate emissions scenarios, resulting from a decrease in the mean and flattening of the probability distribution functions (PDFs) of the sc_PDSI_pm. This flattening is especially pronounced over the Northern Hemisphere land, leading to increased drought frequency even over areas with increasing sc_PDSI_pm. Large differences exist in the CMIP3 and CMIP5 model-projected precipitation and drought changes over the Sahel and northern Australia due to uncertainties in simulating the African Inter-tropical convergence zone (ITCZ) and the subsidence zone over northern Australia, while the wetting trend over East Africa reflects a robust response of the Indian Ocean ITCZ seen in both the CMIP3 and CMIP5 models. While warming-induced PET increases over all latitudes and precipitation decreases over subtropical land are responsible for mean sc_PDSI_pm decreases, the exact cause of its PDF flattening needs further investigation.

Publisher URL: https://link.springer.com/article/10.1007/s10584-016-1742-x

DOI: 10.1007/s10584-016-1742-x

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.