4 years ago

Tipping point effect in plant-fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration

Pierre Mariotte, Vincent E.J. Jassey, Bogdan H. Chojnicki, Michal Słowiński, Monika K. Reczuga, Alexandre Buttler, Mariusz Lamentowicz, Enrique Lara, Luca Bragazza, Sandra Słowińska, Christophe V.W. Seppey, Bjorn J.M. Robroek, Małgorzata Zielińska, Edward A.D. Mitchell, Jan Barabach
Ecosystems are increasingly prone to climate extremes, such as drought, with long lasting effects on both plant and soil communities and, subsequently, on carbon (C) cycling. However, recent studies underlined the strong variability in ecosystem's response to droughts, raising the issue of non-linear responses in plant and soil communities. The conundrum is what causes ecosystems to shift in response to drought. Here, we investigated the response of plant and soil fungi to drought of different intensities using a water table gradient in peatlands – a major C sink ecosystem. Using moving window structural equation models, we show that substantial changes in ecosystem respiration, plant and soil fungal communities occurred when the water level fell below a tipping point of -24 cm. As a corollary, ecosystem respiration was the greatest when graminoids and saprotrophic fungi became prevalent as a response to the extreme drought. Graminoids indirectly influenced fungal functional composition and soil enzyme activities through their direct effect on dissolved organic matter quality, while saprotrophic fungi directly influenced soil enzyme activities. In turn, increasing enzyme activities promoted ecosystem respiration. We show that functional transitions in ecosystem respiration critically depends on the degree of response of graminoids and saprotrophic fungi to drought. Our results represent a major advance in understanding the non-linear nature of ecosystem properties to drought and pave the way towards a truly mechanistic understanding of the effects of drought on ecosystem processes. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/gcb.13928

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.