3 years ago

M344 promotes nonamyloidogenic amyloid precursor protein processing while normalizing Alzheimer’s disease genes and improving memory [Neuroscience]

M344 promotes nonamyloidogenic amyloid precursor protein processing while normalizing Alzheimer’s disease genes and improving memory [Neuroscience]
Karolina J. Janczura, Sachi Desse, Sivan Manoah, Andrew Wodrich, Claes Wahlestedt, Nancy T. H. Miles, Claude-Henry Volmar, Neil Mehta, Paul Halley, David Dorcius, Gregory C. Sartor, Nidhi H. Patel, Guerline Lambert, Michael D. Cameron, Shaun P. Brothers, Hasib Salah-Uddin

Alzheimer’s disease (AD) comprises multifactorial ailments for which current therapeutic strategies remain insufficient to broadly address the underlying pathophysiology. Epigenetic gene regulation relies upon multifactorial processes that regulate multiple gene and protein pathways, including those involved in AD. We therefore took an epigenetic approach where a single drug would simultaneously affect the expression of a number of defined AD-related targets. We show that the small-molecule histone deacetylase inhibitor M344 reduces beta-amyloid (Aβ), reduces tau Ser396 phosphorylation, and decreases both β-secretase (BACE) and APOEε4 gene expression. M344 increases the expression of AD-relevant genes: BDNF, α-secretase (ADAM10), MINT2, FE65, REST, SIRT1, BIN1, and ABCA7, among others. M344 increases sAPPα and CTFα APP metabolite production, both cleavage products of ADAM10, concordant with increased ADAM10 gene expression. M344 also increases levels of immature APP, supporting an effect on APP trafficking, concurrent with the observed increase in MINT2 and FE65, both shown to increase immature APP in the early secretory pathway. Chronic i.p. treatment of the triple transgenic (APPsw/PS1M146V/TauP301L) mice with M344, at doses as low as 3 mg/kg, significantly prevented cognitive decline evaluated by Y-maze spontaneous alternation, novel object recognition, and Barnes maze spatial memory tests. M344 displays short brain exposure, indicating that brief pulses of daily drug treatment may be sufficient for long-term efficacy. Together, these data show that M344 normalizes several disparate pathogenic pathways related to AD. M344 therefore serves as an example of how a multitargeting compound could be used to address the polygenic nature of multifactorial diseases.

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.