3 years ago

{beta}2-Adrenoceptor signaling in airway epithelial cells promotes eosinophilic inflammation, mucous metaplasia, and airway contractility [Pharmacology]

{beta}2-Adrenoceptor signaling in airway epithelial cells promotes eosinophilic inflammation, mucous metaplasia, and airway contractility [Pharmacology]
Indira Pokkunuri, John C. McGrath, Sergio Parra, Michael J. Tuvim, Matthew Hazen, Adedoyin A. Okulate, Ozozoma Omoluabi, Burton F. Dickey, Brian J. Knoll, Craig J. Daly, Elizabeth Windham Li, Long P. Nguyen, Jose M. Gonzalez-Granado, Nour A. Al-Sawalha, Richard A. Bond

The mostly widely used bronchodilators in asthma therapy are β2-adrenoreceptor (β2AR) agonists, but their chronic use causes paradoxical adverse effects. We have previously determined that β2AR activation is required for expression of the asthma phenotype in mice, but the cell types involved are unknown. We now demonstrate that β2AR signaling in the airway epithelium is sufficient to mediate key features of the asthmatic responses to IL-13 in murine models. Our data show that inhibition of β2AR signaling with an aerosolized antagonist attenuates airway hyperresponsiveness (AHR), eosinophilic inflammation, and mucus-production responses to IL-13, whereas treatment with an aerosolized agonist worsens these phenotypes, suggesting that β2AR signaling on resident lung cells modulates the asthma phenotype. Labeling with a fluorescent β2AR ligand shows the receptors are highly expressed in airway epithelium. In β2AR−/− mice, transgenic expression of β2ARs only in airway epithelium is sufficient to rescue IL-13–induced AHR, inflammation, and mucus production, and transgenic overexpression in WT mice exacerbates these phenotypes. Knockout of β-arrestin-2 (βarr-2−/−) attenuates the asthma phenotype as in β2AR−/− mice. In contrast to eosinophilic inflammation, neutrophilic inflammation was not promoted by β2AR signaling. Together, these results suggest β2ARs on airway epithelial cells promote the asthma phenotype and that the proinflammatory pathway downstream of the β2AR involves βarr-2. These results identify β2AR signaling in the airway epithelium as capable of controlling integrated responses to IL-13 and affecting the function of other cell types such as airway smooth muscle cells.

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.