4 years ago

Dodecyl-β-melibioside Detergent Micelles as a Medium for Membrane Proteins

Dodecyl-β-melibioside Detergent Micelles as a Medium for Membrane Proteins
Ritesh Mittal, Zhenwei Lu, Geoffrey C. Li, Charles R. Sanders, James M. Hutchison, Benjamin Travis, Catherine L. Deatherage
There remains a need for new non-ionic detergents that are suitable for use in biochemical and biophysical studies of membrane proteins. Here we explore the properties of n-dodecyl-β-melibioside (β-DDMB) micelles as a medium for membrane proteins. Melibiose is d-galactose-α(1→6)-d-glucose. Light scattering showed the β-DDMB micelle to be roughly 30 kDa smaller than micelles formed by the commonly used n-dodecyl-β-maltoside (β-DDM). β-DDMB stabilized diacylglycerol kinase (DAGK) against thermal inactivation. Moreover, activity assays conducted using aliquots of DAGK purified into β-DDMB yielded activities that were 40% higher than those of DAGK purified into β-DDM. β-DDMB yielded similar or better TROSY-HSQC NMR spectra for two single-pass membrane proteins and the tetraspan membrane protein peripheral myelin protein 22. β-DDMB appears be a useful addition to the toolbox of non-ionic detergents available for membrane protein research.

Publisher URL: http://dx.doi.org/10.1021/acs.biochem.7b00810

DOI: 10.1021/acs.biochem.7b00810

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.