3 years ago

Cooperative Hydrogen-Bond Dynamics at a Zwitterionic Lipid/Water Interface Revealed by 2D HD-VSFG Spectroscopy

Cooperative Hydrogen-Bond Dynamics at a Zwitterionic Lipid/Water Interface Revealed by 2D HD-VSFG Spectroscopy
Satoshi Nihonyanagi, Ken-ichi Inoue, Tahei Tahara, Shoichi Yamaguchi, Prashant C. Singh
Molecular-level elucidation of hydration at biological membrane interfaces is of great importance for understanding biological processes. We studied ultrafast hydrogen-bond dynamics at a zwitterionic phosphatidylcholine/water interface by two-dimensional heterodyne-detected vibrational sum frequency generation (2D HD-VSFG) spectroscopy. The obtained 2D spectra confirm that the anionic phosphate and cationic choline sites are individually hydrated at the interface. Furthermore, the data show that the dynamics of water at the zwitterionic lipid interface is not a simple sum of the dynamics of the water species that hydrate to the separate phosphate and choline. The center line slope (CLS) analysis of the 2D spectra reveals that ultrafast hydrogen-bond fluctuation is not significantly suppressed around the phosphate at the zwitterionic lipid interface, which makes the hydrogen-bond dynamics look similar to that of the bulk water. The present study indicates that the hydrogen-bond dynamics at membrane interfaces is not determined only by the hydrogen bond to a specific site of the interface but is largely dependent on the water dynamics in the vicinity and other nearby moieties, through the hydrogen-bond network.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b02057

DOI: 10.1021/acs.jpclett.7b02057

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.