5 years ago

Highly Selective Olefin Metathesis with CAAC-Containing Ruthenium Benzylidenes

Highly Selective Olefin Metathesis with CAAC-Containing Ruthenium Benzylidenes
Illya Rozenberg, Danielle Butilkov, N. Gabriel Lemcoff, Sebastian Kozuch, Alexander Frenklah
Several olefin metathesis reactions are studied, namely, jojoba oil oligomerization, methyl oleate self-metathesis, ring-closing metathesis (RCM) to form a nitrogen heterocycle, and 1,5-hexadiene acyclic diene metathesis polymerization (ADMET). The catalyst containing the Bertrand–Grubbs cyclic alkyl amino carbene (CAAC) ligand showed high selectivity by diminishing isomerization reactions; this was especially clear at high temperatures where the more widely used nitrogen heterocyclic carbene (NHC)-based catalysts show side reactions. Experimental and computational studies determined that it is much more difficult to produce ruthenium hydrides with CAAC, a property that can explain the improved observed activity. This finding opens a pathway for the development of even more selective olefin metathesis catalysts for reactions that require harsh conditions.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b02409

DOI: 10.1021/acscatal.7b02409

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.