5 years ago

Diversity of Chemical Bonding and Oxidation States in MS4 Molecules of Group 8 Elements

Diversity of Chemical Bonding and Oxidation States in MS4 Molecules of Group 8 Elements
Wei Huang, Ping Yang, Ning Jiang, W. H. Eugen Schwarz, Jun Li
The geometric and electronic ground-state structures of 30 isomers of six MS4 molecules (M=Group 8 metals Fe, Ru, Os, Hs, Sm, and Pu) have been studied by using quantum-chemical density functional theory and correlated wavefunction approaches. The MS4 species were compared to analogous MO4 species recently investigated (W. Huang, W.-H. Xu, W. H. E. Schwarz, J. Li, Inorg. Chem. 2016, 55, 4616). A metal oxidation state (MOS) with a high value of eight appeared in the low-spin singlet Td geometric species (Os,Hs)S4 and (Ru,Os,Hs)O4, whereas a low MOS of two appeared in the high-spin septet D2d species Fe(S2)2 and (slightly excited) metastable Fe(O2)2. The ground states of all other molecules had intermediate MOS values, with S2−, S22−, S21− (and O2−, O1−, O22−, O21−) ligands bonded by ionic, covalent, and correlative contributions. The known tendencies toward lower MOS on going from oxides to sulfides, from Hs to Os to Ru, and from Pu to Sm, and the specific behavior of Fe, were found to arise from the different atomic orbital energies and radii of the (n−1)p core and (n−1)d and (n−2)f valence shells of the metal atoms in row n of the periodic table. The comparative results of the electronic and geometric structures of the MO4 and MS4 species provides insight into the periodicity of oxidation states and bonding. What′s in a state? The geometric and electronic ground-state structures of 30 isomers of six MS4 molecules (M=Group 8 metals Fe, Ru, Os, Hs, Sm, and Pu) have been studied by using quantum-chemical density functional theory and correlated wavefunction approaches. The MS4 species were compared to analogous MO4 species that were recently investigated (see figure).

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201701117

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.