5 years ago

Pulsed laser studies of cationic reactive surfactant radical propagation kinetics

Pulsed laser studies of cationic reactive surfactant radical propagation kinetics
Pulsed laser polymerization coupled with size exclusion chromatography (PLP-SEC) was implemented to study the micellar radical homopropagation kinetics of cationic surfmer, polycaprolactone choline iodide ester methacrylate (PCLnChMA with n = 2 average polyester units), at concentrations of 5, 10, and 20 wt% in aqueous solutions at 25, 50, 70, and 85 °C. PCL2ChMA can propagate in both aqueous and compartmentalized phases, with the relative importance of the two reaction loci changing with temperature. As the corresponding saturated macromonomer concentration, [M], inside the growing polymeric micelles cannot be easily determined, only the product of propagation rate coefficient (k p) and [M] are measured by PLP-SEC; at 25 °C, a minimum k p of 863 ± 95 L mol−1 s−1 is estimated assuming bulk [M]. (Macro)monomer composition drifts for batch acrylamide (AM)/PCLnChMA micellar copolymerizations in D2O at 50 °C are well represented by the apparent reactivity ratios r AM = 0.31 ± 0.03 and r PCL3ChMA = 8.79 ± 0.38.

Publisher URL: www.sciencedirect.com/science

DOI: S0032386117309473

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.