3 years ago

Increased levels of sodium chloride directly increase osteoclastic differentiation and resorption in mice and men

F. Feyerabend, H. Taipaleenmäki, Z. Zhang, A. F. Schilling, B. J. C. Luthringer, E. Hesse, H. G. Machens, L. Wu, R. Willumeit-Römer, M. Maeda



To better understand the association between high salt intake and osteoporosis, we investigated the effect of sodium chloride (NaCl) on mice and human osteoclastogenesis. The results suggest a direct, activating role of NaCl supplementation on bone resorption.


High NaCl intake is associated with increased urinary calcium elimination and parathyroid hormone (PTH) secretion which in turn stimulates the release of calcium from the bone, resulting in increased bone resorption. However, while calciuria after NaCl loading could be shown repeatedly, several studies failed to reveal a significant increase in PTH in response to a high-sodium diet. Another possible explanation that we investigated here could be a direct effect of high-sodium concentration on bone resorption.


Mouse bone marrow macrophage and human peripheral blood mononuclear cells (PBMC) driven towards an osteoclastogenesis pathway were cultivated under culture conditions mimicking hypernatremia environments.


In this study, a direct effect of increased NaCl concentrations on mouse osteoclast differentiation and function was observed. Surprisingly, in a human osteoclast culture system, significant increases in the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, calcitonin receptor (CTR)-positive osteoclasts, nuclear factor-activated T cells c1 (NFATc1) gene expression, and areal and volumetric resorptions were observed for increasing concentrations of NaCl. This suggests a direct, activating, cell-mediated effect of increased concentrations of NaCl on osteoclasts.


The reported that enhanced bone resorption after high-sodium diets may not only be secondary to the urinary calcium loss but may also be a direct, cell-mediated effect on osteoclastic resorption. These findings allow us to suggest an explanation for the clinical findings independent of a PTH-mediated regulation.

Publisher URL: https://link.springer.com/article/10.1007/s00198-017-4163-4

DOI: 10.1007/s00198-017-4163-4

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.