5 years ago

Analyzing Spin Selectivity in DNA-Mediated Charge Transfer via Fluorescence Microscopy

Analyzing Spin Selectivity in DNA-Mediated Charge Transfer via Fluorescence Microscopy
Dokyun Kim, Nako Nakatsuka, Matthew Ye, Paul S. Weiss, Eric E. Fullerton, Anne M. Andrews, John M. Abendroth
Understanding spin-selective interactions between electrons and chiral molecules is critical to elucidating the significance of electron spin in biological processes and to assessing the potential of chiral assemblies for organic spintronics applications. Here, we use fluorescence microscopy to visualize the effects of spin-dependent charge transport in self-assembled monolayers of double-stranded DNA on ferromagnetic substrates. Patterned DNA arrays provide background regions for every measurement to enable quantification of substrate magnetization-dependent fluorescence due to the chiral-induced spin selectivity effect. Fluorescence quenching of photoexcited dye molecules bound within DNA duplexes is dependent upon the rate of charge separation/recombination upon photoexcitation and the efficiency of DNA-mediated charge transfer to the surface. The latter process is modulated using an external magnetic field to switch the magnetization orientation of the underlying ferromagnetic substrates. We discuss our results in the context of the current literature on the chiral-induced spin selectivity effect across various systems.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b04165

DOI: 10.1021/acsnano.7b04165

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.