3 years ago

Investigation of various process parameters on the solubility of carbon dioxide in phosphonium-based deep eutectic solvents and their aqueous mixtures: Experimental and modeling

This research presents the application of predictive regression model such as quadratic regression for estimation of CO2 solubility in deep eutectic solvents namely allyltriphenylphosphonium bromide-triethylene glycol (ATPPB-TEG) into different molar ratios and their aqueous solutions. In doing so, a design of experiment (DOE) was applied based on Taguchi L18 orthogonal array method. Four factors, namely pressure, temperature, molar ratio and water/DES concentration in mixture were selected as input parameters of model. The output parameter of model was the CO2 solubility in terms of mole fraction of CO2 (X CO2). A quadratic regression model was developed after validation and confirmation through several strong approaches. The results disclose that the prediction of developed quadratic regression model is in acceptable agreement with experimental solubility data. The overall R-squared (R2 ) and absolute relative error (ARE) values of proposed quadratic regression model were 0.9966 and 0.0725, respectively. Moreover, analysis of variance (ANOVA) indicates that pressure is the most significant factor influencing the X CO2. Finally, the signal to noise (S/N) ratio shows that the highest levels for pressure, concentration of DES in mixture, and molar ratio, and lowest level for temperature are the optimal levels of input parameters to obtain the highest CO2 solubility in this system. The developed quadratic regression model and correlation are effective and provide quick, reliable and accurate predictions of CO2 solubility in DESs without carrying out any time consuming, difficult and expensive experimental measurements. To the best of our knowledge, this is the first time a regression model was developed for prediction of CO2 solubility in DESs and their aqueous solutions.

Publisher URL: www.sciencedirect.com/science

DOI: S1750583617304851

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.