5 years ago

Control of Charge Carriers Trapping and Relaxation in Hematite by Oxygen Vacancy Charge: Ab Initio Non-adiabatic Molecular Dynamics

Control of Charge Carriers Trapping and Relaxation in Hematite by Oxygen Vacancy Charge: Ab Initio Non-adiabatic Molecular Dynamics
Jin Liu, Oleg V. Prezhdo, Zhaohui Zhou, Run Long, Liejin Guo, Linqiu Li
Ultrafast charge recombination in hematite (α-Fe2O3) severely limits its applications in solar energy conversion and utilization, for instance, in photoelectrochemical water splitting. We report the first time-domain ab initio study of charge relaxation dynamics in α-Fe2O3 with and without the oxygen vacancy (Ov) defect, using non-adiabatic molecular dynamics implemented within time-dependent density functional theory. The simulations show that the hole trapping is the rate-limiting step in the electron–hole recombination process for both neutral and ionized Ov systems. The electron trapping is fast, and the trapped electron are relatively long-lived. A similar asymmetry is found for the relaxation of free charge carriers: relaxation of photoholes in the valence band is slower than relaxation of photoelectrons in the conduction band. The slower dynamics of holes offers an advantage to water oxidation at α-Fe2O3 photoanodes. Notably, the neutral Ov defect accelerates significantly the charge recombination rate, by about a factor of 30 compared to the ideal lattice, due to the stronger electron-vibrational coupling at the defect. However, the recombination rate in the ionized Ov defect is decreased by a factor of 10 with respect to the neutral defect, likely due to expansion of the local iron shell around the Ov site. The Ov defect ionization in α-Fe2O3 photoanodes is important for increasing both electrical conductivity and charge carrier lifetimes. The simulations reproduce well the time scales for the hot carrier cooling, trapping and recombination available from transient spectroscopy experiments, and suggest two alternative mechanisms for the Ov-assisted electron–hole recombination. The study provides a detailed atomistic understanding of carrier dynamics in hematite, and rationalizes the experimentally reported activation of α-Fe2O3 photoanodes by incorporation of Ov defects.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b02121

DOI: 10.1021/jacs.7b02121

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.