3 years ago

Fe(II) Interactions with Smectites: Temporal Changes in Redox Reactivity and the Formation of Green Rust

Fe(II) Interactions with Smectites: Temporal Changes in Redox Reactivity and the Formation of Green Rust
managing.editor@est.acs.org (American Chemical Society)
In this study, temporal changes in the redox properties of three 0.5 g/L smectite suspensions were investigated—a montmorillonite (MAu-1) and two nontronites (NAu-1 and NAu-2) in the presence of 1 mM aqueous Fe(II) at pH 7.8. X-ray absorption spectroscopy revealed that the amount of Fe(II) added quantitatively transformed into chloride-green rust (Cl-GR) within 5 min and persisted over 18 days. Over the same time, the reduction potential of all three suspensions increased by 50 to 150 mV to equilibrate at approximately −100 mV vs SHE. The reduction of a model organic contaminant, 4-chloronitrobenzene (4-CINB), also became increasingly slower over time with virtually no 4-CINB reduction being observed after 18 days. There was a strong correlation between reduction potential and the quantity of 4-ClNB reduced by MAu-1, although other factors were likely involved in the decreased redox reactivity observed in the nontronites. It is hypothesized that the temporal increase in reduction potential results from clay mineral dissolution resulting in increased Fe(III) contents in the Cl-GR. These results demonstrate that long-term studies are recommended to accurately predict contaminant management strategies.

Publisher URL: http://dx.doi.org/10.1021/acs.est.7b01793

DOI: 10.1021/acs.est.7b01793

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.