5 years ago

Stochastic evaluation of annual micropollutant loads and their uncertainties in separate storm sewers

Véronique Ruban, Johnny Gasperi, Sylvie Barraud, Régis Moilleron, Ghassan Chebbo, Marie-Christine Gromaire, Claude Joannis, Ali Hannouche

Abstract

This article describes a stochastic method to calculate the annual pollutant loads and its application over several years at the outlet of three catchments drained by separate storm sewers. A stochastic methodology using Monte Carlo simulations is proposed for assessing annual pollutant load, as well as the associated uncertainties, from a few event sampling campaigns and/or continuous turbidity measurements (representative of the total suspended solids concentration (TSS)). Indeed, in the latter case, the proposed method takes into account the correlation between pollutants and TSS. The developed method was applied to data acquired within the French research project “INOGEV” (innovations for a sustainable management of urban water) at the outlet of three urban catchments drained by separate storm sewers. Ten or so event sampling campaigns for a large range of pollutants (46 pollutants and 2 conventional water quality parameters: TSS and total organic carbon (TOC)) are combined with hundreds of rainfall events for which, at least one among three continuously monitored parameters (rainfall intensity, flow rate, and turbidity) is available. Results obtained for the three catchments show that the annual pollutant loads can be estimated with uncertainties ranging from 10 to 60%, and the added value of turbidity monitoring for lowering the uncertainty is demonstrated. A low inter-annual and inter-site variability of pollutant loads, for many of studied pollutants, is observed with respect to the estimated uncertainties, and can be explained mainly by annual precipitation.

Publisher URL: https://link.springer.com/article/10.1007/s11356-017-0384-5

DOI: 10.1007/s11356-017-0384-5

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.