3 years ago

Phosphorylation coexists with O-GlcNAcylation in a plant virus protein and influences viral infection

Donald F. Hunt, Marta Hervás, Namrata D. Udeshi, Sandra Martínez-Turiño, Jeffrey Shabanowitz, José de Jesús Pérez, Rosana Navajas, Juan Antonio García, Sergio Ciordia
Phosphorylation and O-GlcNAcylation are two widespread post-translational modifications (PTM), often affecting the same eukaryotic target protein. Plum pox virus (PPV) is a member of the genus Potyvirus that infects a wide range of plant species. O-GlcNAcylation of the capsid protein (CP) of PPV has been extensively studied, and some evidence about CP phosphorylation has been additionally reported. Here, we use proteomics analyses to demonstrate that PPV CP is phosphorylated in vivo at the N-terminus and the beginning of the core region. In contrast with the “Yin-Yang” mechanism that applies to some mammalian proteins, PPV CP phosphorylation affects residues different from the O-GlcNAcylated ones (serines Ser-25, Ser-81, Ser-101 and Ser-118). Our findings show that PPV CP can be concurrently phosphorylated and O-GlcNAcylated at nearby residues. However, an analysis using a differential proteomics strategy based on iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) showed a significant enhancement of phosphorylation at Ser-25 in virions recovered from O-GlcNAcylation-deficient plants, suggesting that crosstalk between O-GlcNAcylation and phosphorylation in PPV-CP is taking place. Whereas precluding phosphorylation at the four identified phosphotarget sites only had a limited impact in viral infection, mimicking phosphorylation prevents PPV infection in Prunus persica and weakens infection in Nicotiana benthamiana and other herbaceous hosts, prompting the emergence of potentially compensatory second mutations. We postulate that the joint action of phosphorylation and O-GlcNAcylation in the N-proximal segment of CP allows a fine-tuning of the protein stability, providing the fair amount of CP required in each step of viral infection. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/mpp.12626

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.