5 years ago

Extracting cellular automaton rules from physical Langevin equation models for single and collective cell migration

F. Peruani, H. Hatzikirou, J. M. Nava-Sedeño, A. Deutsch


Cellular automata (CA) are discrete time, space, and state models which are extensively used for modeling biological phenomena. CA are “on-lattice” models with low computational demands. In particular, lattice-gas cellular automata (LGCA) have been introduced as models of single and collective cell migration. The interaction rule dictates the behavior of a cellular automaton model and is critical to the model’s biological relevance. The LGCA model’s interaction rule has been typically chosen phenomenologically. In this paper, we introduce a method to obtain lattice-gas cellular automaton interaction rules from physically-motivated “off-lattice” Langevin equation models for migrating cells. In particular, we consider Langevin equations related to single cell movement (movement of cells independent of each other) and collective cell migration (movement influenced by cell-cell interactions). As examples of collective cell migration, two different alignment mechanisms are studied: polar and nematic alignment. Both kinds of alignment have been observed in biological systems such as swarms of amoebae and myxobacteria. Polar alignment causes cells to align their velocities parallel to each other, whereas nematic alignment drives cells to align either parallel or antiparallel to each other. Under appropriate assumptions, we have derived the LGCA transition probability rule from the steady-state distribution of the off-lattice Fokker-Planck equation. Comparing alignment order parameters between the original Langevin model and the derived LGCA for both mechanisms, we found different areas of agreement in the parameter space. Finally, we discuss potential reasons for model disagreement and propose extensions to the CA rule derivation methodology.

Publisher URL: https://link.springer.com/article/10.1007/s00285-017-1106-9

DOI: 10.1007/s00285-017-1106-9

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.