5 years ago

Steering Against Wind: A New Network of NamiRNAs and Enhancers

MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs with regulatory functions. Traditionally, miRNAs are thought to play a negative regulatory role in the cytoplasm by binding to the 3′UTR of target genes to degrade mRNA or inhibit translation. However, it remains a challenge to interpret the potential function of many miRNAs located in the nucleus. Recently, we reported a new type of miRNAs present in the nucleus, which can activate gene expression by binding to the enhancer, and named them nuclear activating miRNAs (NamiRNAs). The discovery of NamiRNAs showcases a complementary regulatory mechanism of miRNA, demonstrating their differential roles in the nucleus and cytoplasm. Here, we reviewed miRNAs in nucleus to better understand the function of NamiRNAs in their interactions with the enhancers. Accordingly, we propose a NamiRNA–enhancer–target gene activation network model to better understand the crosstalk between NamiRNAs and enhancers in regulating gene transcription. Moreover, we hypothesize that NamiRNAs may be involved in cell identity or cell fate determination during development, although further study is needed to elucidate the underlying mechanisms in detail.

Publisher URL: www.sciencedirect.com/science

DOI: S1672022917301316

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.