3 years ago

Enzyme-Mediated Conversion of Flavin Adenine Dinucleotide (FAD) to 8-Formyl FAD in Formate Oxidase Results in a Modified Cofactor with Enhanced Catalytic Properties

Enzyme-Mediated Conversion of Flavin Adenine Dinucleotide (FAD) to 8-Formyl FAD in Formate Oxidase Results in a Modified Cofactor with Enhanced Catalytic Properties
Donald Hamelberg, Michael G. Souffrant, Andreas S. Bommarius, John M. Robbins, Giovanni Gadda
Flavins, including flavin adenine dinucleotide (FAD), are fundamental catalytic cofactors that are responsible for the redox functionality of a diverse set of proteins. Alternatively, modified flavin analogues are rarely found in nature as their incorporation typically results in inactivation of flavoproteins, thus leading to the disruption of important cellular pathways. Here, we report that the fungal flavoenzyme formate oxidase (FOX) catalyzes the slow conversion of noncovalently bound FAD to 8-formyl FAD and that this conversion results in a nearly 10-fold increase in formate oxidase activity. Although the presence of an enzyme-bound 8-formyl FMN has been reported previously as a result of site-directed mutagenesis studies of lactate oxidase, FOX is the first reported case of 8-formyl FAD in a wild-type enzyme. Therefore, the formation of the 8-formyl FAD cofactor in formate oxidase was investigated using steady-state kinetics, site-directed mutagenesis, ultraviolet–visible, circular dichroism, and fluorescence spectroscopy, liquid chromatography with mass spectrometry, and computational analysis. Surprisingly, the results from these studies indicate not only that 8-formyl FAD forms spontaneously and results in the active form of FOX but also that its autocatalytic formation is dependent on a nearby arginine residue, R87. Thus, this work describes a new enzyme cofactor and provides insight into the little-understood mechanism of enzyme-mediated 8α-flavin modifications.

Publisher URL: http://dx.doi.org/10.1021/acs.biochem.7b00335

DOI: 10.1021/acs.biochem.7b00335

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.