5 years ago

An all-encompassing global convergence result for processive multisite phosphorylation systems

Phosphorylation, the enzyme-mediated addition of a phosphate group to a molecule, is a ubiquitous chemical mechanism in biology. Multisite phosphorylation, the addition of phosphate groups to multiple sites of a single molecule, may be distributive or processive. Distributive systems, which require an enzyme and substrate to bind several times in order to add multiple phosphate groups, can be bistable. Processive systems, in contrast, require only one binding to add all phosphate groups, and were recently shown to be globally stable. However, this global convergence result was proven only for a specific mechanism of processive phosphorylation/dephosphorylation (namely, all catalytic reactions are reversible). Accordingly, we generalize this result to allow for processive phosphorylation networks in which each reaction may be irreversible, and also to account for possible product inhibition. We accomplish this by first defining an all-encompassing processive network that encapsulates all of these schemes, and then appealing to recent results of Marcondes de Freitas et al. that assert global convergence by way of monotone systems theory and network/graph reductions (corresponding to removing intermediate complexes). Our results form a case study into the question of when global convergence is preserved when reactions and/or intermediate complexes are added to or removed from a network.

Publisher URL: www.sciencedirect.com/science

DOI: S0025556417300160

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.