5 years ago

MZmine 2 Data-Preprocessing To Enhance Molecular Networking Reliability

MZmine 2 Data-Preprocessing To Enhance Molecular Networking Reliability
Florent Olivon, Marc Litaudon, David Touboul, Fanny Roussi, Gwendal Grelier
Molecular networking is becoming more and more popular into the metabolomic community to organize tandem mass spectrometry (MS2) data. Even though this approach allows the treatment and comparison of large data sets, several drawbacks related to the MS-Cluster tool routinely used on the Global Natural Product Social Molecular Networking platform (GNPS) limit its potential. MS-Cluster cannot distinguish between chromatography well-resolved isomers as retention times are not taken into account. Annotation with predicted chemical formulas is also not implemented and semiquantification is only based on the number of MS2 scans. We propose to introduce a data-preprocessing workflow including the preliminary data treatment by MZmine 2 followed by a homemade Python script freely available to the community that clears the major previously mentioned GNPS drawbacks. The efficiency of this workflow is exemplified with the analysis of six fractions of increasing polarities obtained from a sequential supercritical CO2 extraction of Stillingia lineata leaves.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01563

DOI: 10.1021/acs.analchem.7b01563

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.