5 years ago

Modulating mitochondrial morphology enhances antitumor effect of 5-ALA-mediated photodynamic therapy both in vitro and in vivo

Modulating mitochondrial morphology enhances antitumor effect of 5-ALA-mediated photodynamic therapy both in vitro and in vivo
5-aminolevulinic acid mediated PDT (5-ALA-PDT) is an approved therapeutic procedure for treating carcinomas of the cervix. However, when employed as a monotherapy, 5-ALA-PDT could not produce satisfactory results toward large and deep tumors. Therefore, developing a method to improve the efficacy of 5-ALA-PDT becomes important. In this study, we demonstrate an enhanced antitumor effect of 5-ALA-PDT by the modulation of mitochondrial morphology. The mitochondria in the cells were regulated into tubular mitochondria or fragmented mitochondria through over expression of Drp1 or Mfn2. Then these cells were treated with identical dose of 5-ALA-PDT. Our results suggest that HeLa cells predominantly containing fragmented mitochondria were more sensitive to 5-ALA-PDT than the cells predominantly containing tubular mitochondria. The morphology of mitochondria changed as the cell cycle progressed, with tubular mitochondria predominantly exhibited in the S phase and uniformly fragmented mitochondria predominantly displayed in the M phase. Paclitaxel significantly increased the population of M-phase cells, while 5-fluorouracil significantly increased the population of S-phase cells in xenograft tumors. Furthermore, low-dose paclitaxel significantly increased the antitumor effects of PDT. However, 5-fluorouracil didn't improve the antitumor effects of PDT. These results demonstrated an enhanced antitumor effect of 5-ALA-PDT from the modulation of mitochondrial morphology. We anticipate that our results will provide an insight for selecting potential chemotherapeutic agents to combine with PDT for tumor treatment.

Publisher URL: www.sciencedirect.com/science

DOI: S1011134417305870

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.