3 years ago
Raman spectroscopy applied to identify metabolites in urine of physically active subjects

Raman spectroscopy is a rapid and non-destructive technique suitable for biological fluids analysis. In this work, dispersive Raman spectroscopy has been employed as a rapid and nondestructive technique to detect the metabolites in urine of physically active subjects before and after vigorous 30 min pedaling or running compared to sedentary subjects. For so, urine samples from 9 subjects were obtained before and immediately after physical activities and submitted to Raman spectroscopy (830 nm excitation, 250 mW laser power, 20 s integration time) and compared to urine from 5 sedentary subjects. The Raman spectra of urine from sedentary showed peaks related to urea, creatinine, ketone bodies, phosphate and other nitrogenous compounds. These metabolic biomarkers presented peaks with different intensities in the urine of physically active individuals after exercises compared to before, measured by the intensity of selected peaks the Raman spectra, which means different concentrations after training. These peaks presented different intensity values for each subject before physical activity, also behaving differently compared to the post-training: some subjects presented increase while others decrease the intensity. Raman spectroscopy may allow the development of a rapid and non-destructive test for metabolic evaluation of the physical training in active and trained subjects using urine samples, allowing nutrition adjustment with the sport's performance.
Publisher URL: www.sciencedirect.com/science
DOI: S1011134417306589
You might also like
Never Miss Important Research
Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.