3 years ago

Real-time functional optical-resolution photoacoustic microscopy using high-speed alternating illumination at 532 nm and 1064 nm

Chang-Seok Kim, Jae Yong Lee, Sang-Won Lee, Heesung Kang, Tae Geol Lee, Soon-Woo Cho, Sang-Min Park
Optical-resolution photoacoustic microscopy (OR-PAM), which has been widely used and studied as a noninvasive and in-vivo imaging technique, can yield high-resolution and absorption contrast images. Recently, metallic nanoparticles and dyes, such as gold nanoparticles, methylene blue, and indocyanine green, have been used as contrast agents of OR-PAM. This study demonstrates real-time functional OR-PAM images with high-speed alternating illumination at two wavelengths. To generate two wavelengths, second harmonic generation at 532 nm with an LBO crystal and a pump wavelength of 1064 nm is applied at a pulse repetition rate of 300 kHz. For alternating illumination, an electro-optical modulator is used as an optical switch. Therefore, the A-line rate for the functional image is 150 kHz, which is half of the laser repetition rate. To enable fast signal processing and real-time displays, parallel signal processing using a graphics processing unit (GPU) is performed. OR-PAM images of the distribution of blood vessels and gold nanorods in a BALB/c-nude mouse's ear can be simultaneously obtained with 500 × 500 pixels and real-time display at 0.49 fps.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jbio.201700210

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.