5 years ago

In Silico prediction of the molecular basis of ClTx and AaCTx interaction with matrix metalloproteinase-2 (MMP-2) to inhibit glioma cell invasion

Houcemeddine Othman, Michael Nilges, Najet Srairi-Abid, Mohamed ElAyeb, Silke Andrea Wieninger

Glioblastoma is the deadliest type of brain cancer. Treatment could target the Matrix metalloproteinase-2 (MMP-2), which is known to be involved in the invasion process of glioblastoma cells. But current available inhibitors are not selective to MMP-2 due to their interaction with the catalytic binding site, which is highly conserved in all MMPs structures. Interestingly, members of the chloride channel blocker scorpion toxins, such as chlorotoxin (ClTx) and AaCTx, inhibit glioblastoma cell invasion and show a promising therapeutic potential. Indeed, it has been shown that CITx inhibits selectively MMP-2 and was also able to cross the blood brain and tissue barriers. Although ClTx and AaCTx show high sequence similarity, AaCTx is ten times less active than ClTx. By using molecular modeling, molecular dynamics and MM-PB(GB)SA free energy estimation, we present the first computational study reporting the interaction mode of ClTx/AaCTx with MMP-2. We found that the two peptides probably act on an exosite of MMP-2 comprising mainly residues from the collagen binding domain, a feature that could be exploited to enhance the selectivity toward MMP-2. van der Waals and hydrophobic forces are the primary mediators of this interaction. The N- and C-termini of the two peptides harbor the key residues of the interaction spread across a conserved amino acid patch. In particular, F6 contributes mostly to the binding free energy in ClTx. We also suggest that the lack of the C-terminal arginine and the residues P10 and R24, might be responsible for altering the activity of AaCTx toward glioblastoma cells compared to ClTx.

Publisher URL: http://www.tandfonline.com/doi/full/10.1080/07391102.2016.1231633

DOI: 10.1080/07391102.2016.1231633

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.