3 years ago

Novel approach for structural identification of protein family: glyoxalase I

Eugenia A. Boshkova, Anton M. Kargatov, Yuri N. Chirgadze

Glyoxalase is one of two enzymes of the glyoxalase detoxification system against methylglyoxal and other aldehydes, the metabolites derived from glycolysis. The glyoxalase system is found almost in all living organisms: bacteria, protozoa, plants, and animals, including humans, and is related to the class of ‘life essential proteins’. The enzyme belongs to the expanded Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily. At present the GenBank contains about 700 of amino acid sequences of this enzyme type, and the Protein Data Bank includes dozens of spatial structures. We have offered a novel approach for structural identification of glyoxalase I protein family, which is based on the selecting of basic representative proteins with known structures. On this basis, six new subfamilies of these enzymes have been derived. Most populated subfamilies A1 and A2 were based on representative human Homo sapiens and bacterial Escherichia coli enzymes. We have found that the principle feature, which defines the subfamilies’ structural differences, is conditioned by arrangement of N- and C-domains inside the protein monomer. Finely, we have deduced the structural classification for the glyoxalase I and assigned about 460 protein sequences distributed among six new subfamilies. Structural similarities and specific differences of all the subfamilies have been presented. This approach can be used for structural identification of thousands of the so-called hypothetical proteins with the known PDB structures allowing to identify many of already existing atomic coordinate entrees.

Publisher URL: http://www.tandfonline.com/doi/full/10.1080/07391102.2017.1367330

DOI: 10.1080/07391102.2017.1367330

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.