3 years ago

Position and orientation of gallated proanthocyanidins in lipid bilayer membranes: influence of polymerization degree and linkage type

Jinming Peng, Ibrahim Khalifa, Wei Zhu, Chunmei Li

It is well known that the biological activity of gallated proanthocyanidins (PAs) is highly structure-dependent. Polymerization degree (DP) and linkage types affect their biological activity greatly. Positions and orientations of gallated PAs in lipid bilayer reveal their structure-function activity at the molecular level. The present work aimed at determining the locations and orientations of epigallocatechin-3-gallate (EGCG) and its derivatives: A-type and B-type EGCG dimers and trimers in 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) and 1-palmitoyl-2-oleoyl phosphatidylethanolamine (POPE) lipid bilayer via molecular dynamic (MD) simulations. The results showed that EGCG and its derivatives localized in the lipid bilayer or on the bilayer/water interface. Their penetration depths and orientations depended on both DP and linkage types. The penetration depths decreased with the increase of DP, sequencing to be EGCG > EGCG dimers > EGCG trimers. Spatially stretched A-type PAs could form more hydrogen bonds (H-bonds) with deep oxygen atoms of lipid bilayer and have higher affinity to the lipid bilayer than B-type PAs. Our results will provide an explicit evidence for PAs’ distinct biological activities.

Publisher URL: http://www.tandfonline.com/doi/full/10.1080/07391102.2017.1369163

DOI: 10.1080/07391102.2017.1369163

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.