3 years ago

A study of comparative modelling, simulation and molecular dynamics of CXCR3 receptor with lipid bilayer

Sushil Kumar Middha, Chinaga Suresh Kumar, Meena Chandran, Vijayakumar Bommuraj, Shanmugarajan Dhivya, Rethavathi Janarthanam, Talambedu Usha

The G-coupled receptors seen on the cell surface are composites with a lipid bilayer. The chemokines are kind of G-coupled receptor which majorly involved in the activation and downstream signalling of the cell. In general, many G-coupled receptors lack their 3D structures which become a hurdle in the drug designing process. In this study, comparative modelling of the CXCR3 receptor was carried out, structure evaluation was done using various tools and softwares. Additionally, molecular dynamics and docking were performed to prove the structural quality and architecture. Interestingly, the studies like toggle switch mechanism, lipid dynamics, virtual screening were carried out to find the potent antagonist for the CXCR3 receptor. During virtual screening 14,303 similar molecules were retrieved among them only four compounds have an ability to interact with a crucial amino acid residue of an antagonist. Hence, these screened compounds can serve as a drug candidate for a CXCR3 receptor, but further in vitro and in vivo studies are ought to do to prove its same efficacy.

Publisher URL: http://www.tandfonline.com/doi/full/10.1080/07391102.2017.1354783

DOI: 10.1080/07391102.2017.1354783

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.