3 years ago

Spectroscopic investigation of Bovine Liver Catalase interactions with a novel phen-imidazole derivative of platinum

Adeleh Divsalar, Roohollah Ghobadi, Ali Akbar Saboury, Ali Reza Harifi-Mood

Successful clinical experience of using cisplatin and its derivatives in cancer therapy has encouraged scientists to synthesize new metal complexes with the aim of interacting with special targets such as proteins In this regard, biological effects of [Pt(FIP)(Phen)](NO3)2 compound which contains a novel phen-imidazole ligand, FIP, was investigated on bovine liver catalase (BLC) structure and function. Various spectroscopic methods such as UV–visible, fluorescence, and circular dichroism (CD) were applied at two temperatures 25 and 37°C for kinetics and structural studies. As a consequence, the enzymatic activity decreased slightly with increasing the platinum compound’s concentration up to 30 μM and then remained constant at near 80% after this concentration. On the other hand, the fluorescence quenching measurements revealed that despite slight changes in activity, catalase experiences notable alterations in three-dimensional environment around the chromophores of the enzyme structure with increasing platinum complex concentration. Moreover, quenching data showed that BLC has two binding sites for Pt complex and hydrogen bonding interactions play a major role in the binding process. Furthermore, CD spectroscopy data showed that Pt(II) complex induces significant decrease in α-helix content of the secondary structure of BLC, but notable increase in random coil proportion accompanying a slight decrease in β-sheet content. All in all, hydrogen bonding interactions which are mainly involved in the binding process of the novel phen-imidazole compound to BLC significantly alter the protein structure but slightly change its function. This might be a promising outcome for chemotherapists and medicinal chemists to investigate in vivo properties of this novel metal complex with significant binding tendency to a macromolecule in the low concentrations without decreasing its intrinsic function.

Publisher URL: http://www.tandfonline.com/doi/full/10.1080/07391102.2017.1290551

DOI: 10.1080/07391102.2017.1290551

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.