3 years ago

Cubic phases in phosphatidylethanolamine dispersions: Formation, stability and phase transitions

Cubic phases in phosphatidylethanolamine dispersions: Formation, stability and phase transitions
The non-lamellar phases formed by membrane lipids in diluted aqueous dispersions are mainly represented by the inverted hexagonal phase, HII, and phases of cubic symmetry, among them the bicontinuous cubic phases Pn3m (Q224), Im3m (Q229) and Ia3d (Q230). Here we report X-ray diffraction data on phosphatidylethanolamine (PE) dispersions forming highly stable Im3m and Pn3m cubic phases at ambient temperature as a result of a temperature cycling through the Lα − HII transition and complement the structural characterization of the PE phase transitions with thermodynamic data obtained by differential scanning calorimetry and differential scanning densitometry. All studied PEs displayed irreversible two-state Im3m → Pn3m phase transitions in the range ∼75–85°C with enthalpy of ∼100cal/mol. By contrast with the Lα − HII transition, the Im3m → Pn3m transition was not accompanied by a stepwise change of the specific volume. The cubic phases induced in dipalmitoleoyl PE dispersions are of particular interest because of their facile formation, especially in the presence of small amounts of charged lipid admixtures, and long-term stability at physiologically relevant conditions in a broad temperature range around room temperature.

Publisher URL: www.sciencedirect.com/science

DOI: S0009308417302372

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.