5 years ago

High-resolution imaging of muscle attachment structures in Caenorhabditis elegans

David H. Hall, Alexa Mattheyses, Ken C.Q. Nguyen, Guy M. Benian, Yohei Matsunaga, Hiroshi Qadota
We used structured illumination microscopy (SIM) to obtain super-resolution images of muscle attachment structures in Caenorhabditis elegans striated muscle. SIM imaging of M-line components revealed two patterns: PAT-3 (β-integrin) and proteins that interact in a complex with the cytoplasmic tail of β-integrin and localize to the basal muscle cell membrane [UNC-112 (kindlin), PAT-4 (ILK), UNC-97 (PINCH), PAT-6 (α-parvin), and UNC-95], are found in discrete, angled segments with gaps. In contrast, proteins localized throughout the depth of the M-line (UNC-89 (obscurin) and UNC-98) are imaged as continuous lines. Systematic immunostaining of muscle cell boundaries revealed that dense body components close to the basal muscle cell membrane also localize at cell boundaries. SIM imaging of muscle cell boundaries reveal “zipper-like” structures. Electron micrographs reveal electron dense material similar in appearance to dense bodies located adjacent to the basolateral cell membranes of adjacent muscle cells separated by ECM. Moreover, by EM, there are a variety of features of the muscle cell boundaries that help explain the zipper-like pattern of muscle protein localization observed by SIM. Short dense bodies in atn-1 mutants that are null for α-actinin and lack the deeper extensions of dense bodies, showed “zipper-like” structures by SIM similar to cell boundary structures, further indicating that the surface-proximal components of dense bodies form the “zipper-like” structures at cell boundaries. Moreover, mutants in thin and thick filament components do not have “dot-like” dense bodies, suggesting that myofilament tension is required for assembly or maintenance of proper dense body shape.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/cm.21410

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.