3 years ago

The Effect of Five Biomass Cropping Systems on Soil-Saturated Hydraulic Conductivity Across a Topographic Gradient

Usman Anwar, Lisa A. Schulte, Matthew Helmers, Randall K. Kolka

Abstract

Understanding the environmental impact of bioenergy crops is needed to inform bioenergy policy development. We determined the effects of five biomass cropping systems—continuous maize (Zea mays), soybean (Glycine max)-triticale (Triticosecale ×)/soybean-maize, maize-switchgrass (Panicum virgatum), triticale/sorghum (Sorghum bicolor), and triticale-aspen (Populus alba × P. grandidentata)—on soil-saturated hydraulic conductivity (K S ) across a toposequence in central Iowa, USA. We compared data from the time of cropping system establishment in 2009 to 4 years post-establishment. Both our 2009 and 2013 data confirmed that cropping system impacts on K S vary by landscape position. We found that differences in cropping system impacts were more likely to occur at lower landscape positions, specifically, within footslope and floodplain positions. Previous research on cropping system impacts suggested that grass and woody systems were associated with a general increase in K S over time, with greater changes likely occurring at landscape positions with a higher erosive potential or lower SOC content. Our results confirmed that the triticale-aspen woody system was associated with a significant increase in K S across all landscape positions. In contrast, we did not observe an increase in K S under maize-switchgrass, which we attributed to the high density of switchgrass roots by the fourth year of study, but expect an increase in K S under switchgrass under longer measurement periods. We also found a significant increase in K S in the annual systems, likely due to the conversion to no-till soil management with cropping system establishment. We expect such differences to become more apparent over longer time scales as cropping systems continue to impact soil hydraulic properties.

Publisher URL: https://link.springer.com/article/10.1007/s12155-017-9843-6

DOI: 10.1007/s12155-017-9843-6

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.