2 years ago

Rapid Aging as a Key to Understand Deactivation of Ni/Al2O3 Catalysts Applied for the CO2 Methanation

Dennis Beierlein, Dorothea Häussermann, Yvonne Traa, Elias Klemm

We developed a rapid aging method for Ni/Al2O3 methanation catalysts mimicking the real aging in the actual application. The method is based on hydrothermal deactivation of the catalyst at 600 or 700 °C, which leads to a catalyst with nearly constant conversion after a much shorter time period compared to normal aging. The hydrothermally aged catalysts are characterized by N2 adsorption, X-ray powder diffraction, temperature-programmed reduction and H2 chemisorption. The catalytic performance of the aged catalysts is comparable to the one of a catalyst deactivated in a long-term measurement with up to 720 h on stream. The time needed for reaching a stable conversion can be diminished by rapid aging by a factor of 10. The investigations also showed that the long-term deactivation is caused by Ni particle sintering and that the support pores limit the Ni particle size.

Graphical

Open access
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.