5 years ago

Ascorbic acid-mediated enhanced cardiomyocyte differentiation of mouse ES-cells involves interplay of DNA methylation and multiple-signals

Embryonic stem cells (ES-cells) provide a good model system to study lineage-specific differentiation. Though, the differentiation of ES-cells to cardiomyocytes is documented, a clear understanding of the molecular mechanism of differentiation and improved functional-differentiation efficiency are yet to be achieved. In this regard, ascorbic acid (Aa) is shown to be one of the effective cardiac inducers in ES-cells. But, its mechanism is poorly understood. We therefore, investigated the mechanism of Aa-mediated cardiomyocyte differentiation of ES-cells. Here, we describe the potential involvement of epigenetic (DNA methylation) as well as integrin- and Erk- signaling systems during cardiomyocyte differentiation. Transgenic GS-2 ES-cells and wild-type D3 ES-cells were differentiated to cardiomyocytes, in the presence or absence of Aa and with or without inhibitors of Erk-, collagen- and integrin- pathways. At specific time points, differentiated states of ES-cells were scored by gene expression analyses and the proportion of functional cTnI+ cardiomyocytes. DNA methylation changes of Isl-1, BMP-2, GATA-4 and α-MHC in cardiogenic cells, following stimulation with Aa, were analyzed by using methylation specific PCR (MSP). We observed that Aa, when applied in initial phase of ES-cell differentiation, consistently enhanced cardiac differentiation (99%) over that observed during spontaneous differentiation (70%). This was associated with enhanced expressions of cardiogenesis-associated genes. A two-fold increase in cTnI+ cells was observed, with appropriate myofibril arrangement. The observed effect of Aa was due to enhanced collagen and integrin signaling, coupled with a high p-ERK1/2 expression, downstream. Besides, the involvement of DNA methylation in regulating the expression of cardiac genes i.e., Isl-1 and α-MHC was also observed. Overall, this study, for the first time, demonstrates that Aa-mediated cardiac enhancement is brought about, mechanistically, through the interplay of epigenetic changes in DNA methylation of cardiac genes (Isl-1 and α-MHC) and integrin signaling system.

Publisher URL: www.sciencedirect.com/science

DOI: S030146811630024X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.