5 years ago

Suppressing Excimers in H-Aggregates of Perylene Bisimide Folda-Dimer: Role of Dimer Conformation and Competing Assembly Pathways

Suppressing Excimers in H-Aggregates of Perylene Bisimide Folda-Dimer: Role of Dimer Conformation and Competing Assembly Pathways
Samaresh Samanta, Debangshu Chaudhuri
Long-lived excitons in H-aggregates hold great promise for efficient transport of excitation energy, provided they are not scavenged by structurallly relaxed excimers. We report solution self-assembly of a perylene bisimide (PBI) folda-dimer that exhibits two distinct kinetic stages: an initial fast assembly leads to metastable aggregates with large excimer contribution that is followed by a slower growth of stable, extended H-aggregates free of excimers. Mechanistic investigations reveal an interplay of two competing aggregation pathways, where suppression of excimers is directly linked to the crossover from an isodesmic to cooperative aggregation. How the comeptition between two self-assembly pathways is influenced by the conformational flexibility of the folda-dimer is also discussed.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01338

DOI: 10.1021/acs.jpclett.7b01338

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.