3 years ago

Tuning Molecular-Level Polymer Conformations Enables Dynamic Control over Both the Interfacial Behaviors of Ag Nanocubes and Their Assembled Metacrystals

Tuning Molecular-Level Polymer Conformations Enables Dynamic Control over Both the Interfacial Behaviors of Ag Nanocubes and Their Assembled Metacrystals
Chee Leng Lay, Yijie Yang, Xing Yi Ling, Yih Hong Lee
In surface chemistry-directed nanoparticle self-assembly, it remains challenging to continuously modulate nanoparticle behavior at the oil/water interface without replacing surface functionality or particle morphology. Here, we utilize solvent-tunable molecular-level polymer conformation changes to achieve “multiple metacrystals using one nanoparticle with one chemical functionality”. We use Ag nanocubes functionalized with a mixed monolayer of thiol-terminated poly(ethylene glycol) (PEG) and hexadecanethiol (C16). We continuously modulate PEG conformation from swollen to coiled states by decreasing solvent polarity, whereas C16 promotes nanocube dispersion in organic carrier solvents. Such PEG conformation changes drive Ag nanocubes to adopt tilted, standing, and planar configurations at the oil/water interface, with their interfacial positions changing from halfway across the interface to almost immersed within the oil phase. We also identify four specific polarities which enable Ag nanocubes to assemble into large-area metacrystals with linear, hexagonal, and square close-packed lattices. Our work establishes an innovative strategy to achieve robust tunability of nanoparticle interfacial behavior and unprecedented modulation of metacrystal structure.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b02211

DOI: 10.1021/acs.chemmater.7b02211

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.