5 years ago

Molecular Organization of 2,1,3-Benzothiadiazoles in the Solid State

Molecular Organization of 2,1,3-Benzothiadiazoles in the Solid State
Sophie Langis-Barsetti, Thierry Maris, James D. Wuest
Derivatives of 2,1,3-benzothiadiazole (1) are widely used in many areas of science and are particularly valuable as components of active layers in various thin-film optoelectronic devices. Even more effective benzothiadiazoles are likely to result if a deeper understanding of their preferred patterns of molecular association can be acquired. To provide new insight, we have analyzed the structures of compounds in which multiple benzothiadiazole units are attached to well-defined planar and nonplanar molecular cores. Our results show that molecular organization can be controlled in complex structures by using directional S···N bonding of benzothiadiazole units and other characteristic interactions. Moreover, the observed structures are distinctly different from those of analogous arenes. Replacing benzene rings in arenes by thiadiazoles thereby provides a strategy for making new compounds with extended systems of π-conjugation and unique patterns of molecular organization, including the ability to co-crystallize with the fullerenes C60 and C70.

Publisher URL: http://dx.doi.org/10.1021/acs.joc.6b02778

DOI: 10.1021/acs.joc.6b02778

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.