Mass spectrometry methods to study protein-metabolite interactions
Introduction: To understand and manipulate biochemical processes and signaling pathways, the knowledge of endogenous protein-metabolite interactions would be extremely helpful. Recent developments in precision mass spectrometry, high-throughput proteomics and sensitive metabolomic profiling are beginning to converge on a possible solution, heralding a new era of global metabolome-proteome ‘interactome’ studies that promise to change biomedical research and drug discovery.
Areas covered: Here, we review innovative mass spectrometry-based methods and recent pioneering studies aimed at elucidating the physical associations of small molecule ligands with cellular proteins. The technologies covered belong to two main categories: tag-based and tag-free methods. We emphasize the latter in this review, and outline promising experimental workflows and key data analysis considerations involved.
Expert opinion: Recent ground-breaking advances in chemical-proteomics technology and allied computational methods now make the global detection of protein-ligand engagement an increasingly attractive research problem. Despite ongoing challenges, rapid progress in the field is expected these coming next few years, leading to a refreshed systems biology research paradigm and much needed new opportunities for improving sparse drug discovery pipelines.
Publisher URL: http://www.tandfonline.com/doi/full/10.1080/17460441.2017.1378178
DOI: 10.1080/17460441.2017.1378178
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.