4 years ago

Highly Stable Organic Small Molecular Nanoparticles as an Advanced and Biocompatible Phototheranostic Agent of Tumor in Living Mice

Highly Stable Organic Small Molecular Nanoparticles as an Advanced and Biocompatible Phototheranostic Agent of Tumor in Living Mice
Dan Ding, Yuan Fang, Ben Zhong Tang, Jacky W. Y. Lam, Xianglong Hu, Ji Qi, Ryan T. K. Kwok, Xiaoyan Zhang
Near-infrared (NIR)-absorbing organic small molecules hold great promise as the phototheranostic agents for clinical translation by virtue of their intrinsic advantages such as well-defined chemical structure, high purity, and good reproducibility. However, most of the currently available ones face the challenges in varying degrees in terms of photothermal instability, and photobleaching/reactive oxygen nitrogen species (RONS) inresistance, which indeed impair their practical applications in precise diagnosis and treatment of diseases. Herein, we developed highly stable and biocompatible organic nanoparticles (ONPs) for effective phototheranostic application by design and synthesis of an organic small molecule (namely TPA-T-TQ) with intensive absorption in the NIR window. The TPA-T-TQ ONPs with no noticeable in vivo toxicity possess better capacities in photothermal conversion and photoacoustic imaging (PAI), as well as show far higher stabilities including thermal/photothermal stabilities, and photobleaching/RONS resistances, when compared with the clinically popularly used indocyanine green. Thanks to the combined merits, the ONPs can serve as an efficient probe for in vivo PAI in a high-contrast manner, which also significantly causes the stoppage of tumor growth in living mice through PAI-guided photothermal therapy. This study thus provides an insight into the development of advanced NIR-absorbing small molecules for practical phototheranostic applications.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b03062

DOI: 10.1021/acsnano.7b03062

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.